Example of Applications of the Data Cube Concept

Alignment of Instruments

One of the key elements of an assessment or learning system is the contextualization of the items and learning activities in terms of descriptive keywords that tie them to the subject. The keywords are often referred to as attributes in the Q-matrices, skills, concepts, or tags (in the learning sciences). We will use "concepts" as an overarching term for simplicity. Besides items that psychometrics focuses on, the field of learning sciences has a suite of monikers for elements that cater to learning. The latter include: readings, tutorials, interactive visualizations, and tutored problems (both single-loop and stepped). To cover all classes of deliverable learning and assessment items we would use the term "content-based resources" or "resources" for short.

The relationships between concepts and resources are often referred to as indexing. The intensive labor required to create indexes for a set of items can be leveraged via machine learning/NLP techniques over a tremendous corpus of items/resources. This large scale application was not possible before we had present day storage solutions and sophisticated NLP algorithms. More specifically, the production of said indexing is time-consuming, laborious, and requires trained subject matter experts. There are multiple approaches that address lowering the costs of producing indices that contextualize assessment items and learning resources. These approaches can come in the form a machine learning procedure that, given the training data from an exemplary human indexing, would perform automated indexing of resources.

Data cubes can offer affordances to support the process of production and management of concept-content/resource/item indices. First, even within one subject, such as Math or Science, there could be alternative taxonomies or ontologies that could be used to contextualize resources. See Figures 7, 8 for illustrations. Alternatives could come from multiple agencies that develop educational or assessment content or could rely upon an iterative process within one team.

Second, the case when multiple concept taxonomies are used to describe multiple non-overlapping pools of items or resources reserves room for a class of machine learning indexing procedures that could be described as taxonomy alignment procedures. These procedures are tasked with translating between the languages of multiple taxonomies to achieve a ubiquitous indexing of resources.

Third, all classes of machine learning procedures rely upon multiple features within a data cube. The definition and composition of these features is initially developed by subject matter experts. For example, the text that describes the item or resource, its content, or its rationale could be parsed into a high-dimensional linguistic space. Under these circumstances, a deck of binary classifiers (one per concept), or a multi-label classifier could be devised to produce the indexing.

Also, when we are talking about translation form one concept taxonomy to another, one could treat existing expert-produced double-coding of a pool of resources, in terms of the two taxonomies being translated, as a training set. A machine learning procedure, then, would be learning the correspondence relationships. Often, in the form of an n-to-m mapping example, when one item/resource is assigned n concepts from one taxonomy and m from the other.

One of our first attempts with translating two alternative concept taxonomies – between the ACT Subject Taxonomy and ACT Holistic Framework – has yielded only modest results. We had only 845 items indexed in both taxonomies and 2,388 items that only had ACT Subject Taxonomy indexing. Active sets of concepts present in the combined set of 3,233 items included 435 and 455 for the Subject Taxonomy and Holistic Framework respectively. A machine learning procedure based on an ensemble of a deck of multinomial regressions (one per each of the 455 predicted Holistic Framework concepts) yielded a 51% adjusted accuracy. Since the index could be sparse, due to the large size of the concept taxonomy and the lower density of items per concept, and the classic machine learning definition of accuracy (matched classifications over total cases classified) would yield an inflated accuracy result due to overwhelming number of cases where the absence of a concept is easily confirmed (we obtained classical accuracies at 99% level consistently). Adjusted accuracy addresses this phenomenon by limiting the denominator to the union of concepts that were present in the human coder-supplied ground-truth training data, or in the prediction (the latter came in the form of pairings of source and target taxonomy concepts, see Figure 11 for an example). Thus, our work so far and the 51% accuracy should be understood as the first step toward automating taxonomy alignment. We learned that it is significantly harder to align test items than it is to align the instructional resources, because the test items do not usually contain the words that describe the concepts, while the instructional resources do have richer descriptions. This motivated us to include additional data about the test items and the test takers, to increase the samples for the training data, and to refine the models. This is work in progress.


Figure 11. Examples of question items manually tagged with holistic framework and subject taxonomy.


Diagnostic Models

In addition to the alignment of content which is a relatively new application in education, the data cube can support psychometric models that use data from multiple testing administrations and multiple testing instruments. For example, one could develop cognitive diagnostic models (CDMs) that use the data from multiple tests taken by the same individual. CDMs are multivariate latent variable models developed primarily to identify the mastery of skills measured in a particular domain. The CDMs provide fine-grained inferences about the students' mastery and relevance of these inferences to the student learning process.

Basically, a CDM in a data cube relates the response vector Xi = (Xi11, …, Xijt, …, XiJT), where Xijt represents the response of the ith individual to the jth item from the testing instrument t, using a lower dimensional discrete latent variable Ai=(Ai1, …,  Aik, …, AiK) and Aik is a discrete latent variable for individual i for latent dimension k as described by the taxonomy or the Q-matrix. CDMs model the conditional probability of observing Xi given Ai, that is, P(Xi|Ai). The specific form of the CDM depends on the assumptions we make regarding how the elements of Ai interact to produce the probabilities of response Xijt.

Traditional data governances in testing organizations cannot easily support the application of the CDMs over many testing administrations and testing instruments: usually the data from each testing instrument is saved in a separate database, that often is not aligned with the data from other instruments. In addition, in the traditional data governance, the taxonomies (and the Q-matrices) across testing instruments are not part of the same framework and are not aligned.


Learning Analytics and Navigation

Another example of the usefulness of a data cube is to provide learning analytics based on the data available about each student. As before, in a data cube, we start with the response vector Xi = (Xi11, …,  Xijt, …, XiJT), where Xijt represents the response of the ith individual to the jth item from the testing instrument t. Then, let's assume that we also have ancillary data about the student (demographic data, school data, attendance data, etc.) collected in the vector (or matrix) or Bi=(Bi1, …,  Bim, …, BiM) and Bim represents a specific type of ancillary variable (gender, school type, attendance data, etc.). Let's assume that for some students we also have data about their success in college, collected under C. These data, XB, and C can now be combined across students to first classify all the students, and then later on, to predict the student's success in the first year of college for each student using only the Xi and Bi. Most importantly, these analytics can be used as the basis for learning pathways for different learning goals and different students to support navigation through educational and career journey.


Learning, Measurement, and Navigation Systems

The ACTNext prototype app, Educational Companion, illustrates an applied instance of linking learning, assessment, and navigation data streams using the data governance described above as the data cube. The app was designed as a mobile solution for flexibly handling the alignment of learner data and content (assessment and instructional) with knowledge and skill taxonomies, while also providing learning analytics feedback and personalized resource recommendations based on the mastery theory of learning to support progress in areas identified as needing intervention. Educational Companion evaluates learning progress by continuously monitoring measurement data drawn from learner interactions across multiple sources, including ACT's portfolio of learning and assessment products. Using test scores from ACT's college readiness exam as a starting point, Companion identifies the underlying relationships between a learner's measurement data and skill taxonomies across core academic areas identified in ACT's Holistic Framework (HF). If available, additional academic assessment data is drawn from a workforce skills assessment (ACT WorkKeys), as well as Socio-Emotional Learning (SEL) data taken from ACT's Tessera exam. Bringing these data streams together, the app predicts skill and knowledge mastery at multiple levels in a taxonomy, such as the HF.

See Figure 12 for an illustration of the architecture for the Educational Companion App. More details about this prototype are given in von Davier et al.


Figure 12. Illustration of the data flow for the ACTNext Educational Companion App. In this figure, the PLKG denotes the personal learning knowledge graph, and the LOR denotes Learning Object Repository. The Elo-based proficiency refers to the estimated proficiency using the Elo ranking algorithm. The knowledge graph is based on the hierarchical relationship of the skills and subskills as described by a taxonomy or standards. A detailed description is available in von Davier et al.

As explained in section Alignment of Instruments above, through aligning instructional resources and taxonomic structures using ML and NLP methods, and in conjunction with continuously monitoring updates to a learner's assessment data, Companion uses its knowledge of the learner's predicted abilities along with the understanding of hierarchical, parent/child relationships within the content structure to produce personalized lists of content and drive their learning activities forward. Over time, as learners continue to engage with the app, Companion refines, updates, and adapts its recommendations and predictive analytics to best support an individual learner's needs. The Companion app also incorporates navigational tools developed by Mattern et al. which provide learners with insights related to career interests, as well as the relationships between their personal data (assessment results, g.p.a., etc.) and longitudinal data related to areas of study in college and higher education outcome studies. The Companion app was piloted with a group of Grades 11 and 12 high school students in 2017.

Following the pilot, components from the Educational Companion App were redeployed as capabilities that could extend this methodology to other learning and assessment systems. The ACTNext Recommendation and Diagnostics (RAD) API was released and integrated into ACT's free, online test preparation platform ACT Academy, offering the same mastery theory of learning and free agency via evidence-based diagnostics and personalized recommendations of resources.