This is a useful article for ensuring the validation of your statistical analyses. However, much of what a BI analyst does deals with qualitative data that may not as strictly adhere to the validation recommendations and requirements presented here. Within the field of intelligence analysis, much work has been done to identify ways to quantify qualitative assessments of validity, reliability, analytic confidence, and other aspects to ensure validation of intelligence findings, many modeled on statistical validation. Think about your most recent project, whether for work or school. How could you numerically and objectively evaluate the validity of your research?
6. Conclusion
This work discusses applications of statistics in analytical method validation. Method validation helps to validate the analytical method for a range of concentrations so that the change in formulation or concentration do not require additional validation. Once the methods have been developed, qualified and validated the impact they have on out-of-specification rates and process capability needs to be quantified and evaluated to determine its effectiveness for future use.
The statistical methods used during the analytical method validation involve the basic knowledge of statistics. Even though there are statistical packages available to perform statistical calculations, it is important to understand the mathematical basis behind these calculations. It is essential for the analysts to be familiar with the basic statistical elements. Statistics used for validation data interpretations should be incorporated into the company's standard procedure and specified in the validation protocol and report.