The notion of "quality" is not as simple as it may seem. For any engineered product, many desired qualities are relevant to a particular project. The section explains software quality fundamentals, including the main SQM processes: quality assurance, verification, validation, review, and audit. Software quality refers to the delivered product of a software development project, but that quality depends on the quality of the "upstream" products from which it was derived, including requirements, design, construction, and the software quality activities that support it during the development, namely, validation, verification, testing, and measurement. Software quality terminology is numerous, informal, formal, and often ambiguous, with multiple categorizations (internal, external, operational, and feature quality). All of this makes software quality interesting to study.
From a domain perspective, software quality applies to both the problem application domain and the solution domains. It applies to all software development activities and all software products. It is interdisciplinary in that it is a topic in management, software engineering, mathematics, statistics, measurement, and more. It intersects the generic categories of human, software, and hardware and refers to the evolving relationships of these generic types. This last observation hints at the next stage in the evolution of computing technology.
Software quality is a major driving factor for computing technology evolution, which is increasing our capabilities to solve complex problems better, faster, on a larger scale, and with more automation. Generally, the problem domain gets smaller as the solution domain gets larger. The solution domain gets larger as hardware and software support becomes automated. More automation often begins with new abstractions we make in the problem domain, resulting in new relationships between hardware and software, eventually manifesting as automated support tools. We give names to these tools: "cloud computing", big databases, programming languages (front-end, network, back-end, and so on), and AI (natural language translation, image recognition, and machine learning). Indeed, software quality is very interesting.
Software Quality Fundamentals
Quality Improvement
The quality of software products can be improved through an iterative process of continuous improvement which requires management control, coordination, and feedback from many concurrent processes: the software life cycle processes; the process of error/defect detection, removal, and prevention; and the quality improvement process.
The theory and concepts behind quality improvement, such as building in quality through the prevention and early detection of errors, continuous improvement, and customer focus, are pertinent to software engineering. These concepts are based on the work of experts in quality who have stated that the quality of a product is directly linked to the quality of the process used to create it.
Approaches such as the Total Quality Management (TQM) process of Plan, Do, Check, and Act (PDCA) are tools by which quality objectives can be met. Management sponsorship supports process and product evaluations and the resulting findings. Then, an improvement program is developed identifying detailed actions and improvement projects to be addressed in a feasible time frame. Management support implies that each improvement project has enough resources to achieve the goal defined for it. Management sponsorship must be solicited frequently by implementing proactive communication activities. The involvement of work groups, as well as middle-management support and resources allocated at project level.