The notion of "quality" is not as simple as it may seem. For any engineered product, many desired qualities are relevant to a particular project. The section explains software quality fundamentals, including the main SQM processes: quality assurance, verification, validation, review, and audit. Software quality refers to the delivered product of a software development project, but that quality depends on the quality of the "upstream" products from which it was derived, including requirements, design, construction, and the software quality activities that support it during the development, namely, validation, verification, testing, and measurement. Software quality terminology is numerous, informal, formal, and often ambiguous, with multiple categorizations (internal, external, operational, and feature quality). All of this makes software quality interesting to study.
From a domain perspective, software quality applies to both the problem application domain and the solution domains. It applies to all software development activities and all software products. It is interdisciplinary in that it is a topic in management, software engineering, mathematics, statistics, measurement, and more. It intersects the generic categories of human, software, and hardware and refers to the evolving relationships of these generic types. This last observation hints at the next stage in the evolution of computing technology.
Software quality is a major driving factor for computing technology evolution, which is increasing our capabilities to solve complex problems better, faster, on a larger scale, and with more automation. Generally, the problem domain gets smaller as the solution domain gets larger. The solution domain gets larger as hardware and software support becomes automated. More automation often begins with new abstractions we make in the problem domain, resulting in new relationships between hardware and software, eventually manifesting as automated support tools. We give names to these tools: "cloud computing", big databases, programming languages (front-end, network, back-end, and so on), and AI (natural language translation, image recognition, and machine learning). Indeed, software quality is very interesting.
Reviews and Audits
Audits
The purpose of a software audit is to provide an independent evaluation of the conformance of software products and processes to applicable regulations, standards, guidelines, plans, and procedures. The audit is a formally organized activity, with participants having specific roles, such as lead auditor, another auditor, a recorder, or an initiator, and includes a representative of the audited organization. The audit will identify instances of nonconformance and produce a report requiring the team to take corrective action.
While there may be many formal names for reviews and audits such as those identified in the standard (see IEEE1028- 97), the important point is that they can occur on almost any product at any stage of the development or maintenance process.