Watch this lecture series and complete the interactive exercises to learn how to write an equation of a line in slope-intercept form.
Slope-intercept from two points - Questions
Answers
1.\(y=-3 x+7\)
Let's find the slope:
\(\begin{aligned}
\text { Slope } &=\frac{(-8)-1}{5-2} \\
&=\frac{-9}{3} \\
&=-3
\end{aligned}\)
The equation is \(y=-3 x+b\) for some \(b\).
Let's plug the point \( (2,1)\) to find \(b\):
\(\begin{aligned}
&y=-3 x+b \\
&1=-3(2)+b \\
&1=-6+b \\
&7=b
\end{aligned}\)
The equation is \(y=-3 x+7\).
2. \(y=\frac{4}{3} x-12\)
Let's find the slope:
\(\begin{aligned}
\text { Slope } &=\frac{-4-(-8)}{6-3} \\
&=\frac{4}{3}
\end{aligned}\)
The equation is \(y=\frac{4}{3} x+b \) for some \(b\).
Let's plug the point \((6,−4) \)to find \(b\):
\(\begin{aligned}
y &=\frac{4}{3} x+b \\
-4 &=\frac{4}{3}(6)+b \\
-4 &=8+b \\
-12 &=b
\end{aligned}\)
The equation is \(y=\frac{4}{3} x-12\).
3. \(y=8 x-25\).
Let's find the slope:
\(\begin{aligned}
\text { Slope } &=\frac{7-(-1)}{4-3} \\
&=\frac{8}{1} \\
&=8
\end{aligned}\)
The equation is \(y=8 x+b \) for some \(b\).
Let's plug the point \((4, 7)\) to find \(b\):
\(\begin{aligned}
y &=8 x+b \\
7 &=8(4)+b \\
7 &=32+b \\
-25 &=b
\end{aligned}\)
The equation is \(y=8 x-25\).
4. \(y=-\frac{2}{5} x-11\)
Let's find the slope:
\(\begin{aligned}
\text { Slope } &=\frac{-9-(-7)}{-5-(-10)} \\
&=\frac{-2}{5} \\
&=-\frac{2}{5}
\end{aligned}\)
The equation is \(y=-\frac{2}{5} x+b\) for some \(b\).
Let's plug the point \( (−5,−9) \) to find \(b\):
\(\begin{aligned}
y &=-\frac{2}{5} x+b \\
-9 &=-\frac{2}{5}(-5)+b \\
-9 &=2+b \\
-11 &=b
\end{aligned}\)
The equation is \(y=-\frac{2}{5} x-11\).