Slope in a table - Questions

Answers

1. The slope is \(-1\).

\(\text { Slope }=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Change in } y}{\text { Change in } x}\)

We can calculate the change in \(x\) and change in \(y\) by picking any two pairs of corresponding \(x\)- and \(y\)-values.

\(x\) 5 \(\stackrel{+1}{\longrightarrow}\) 6 \(\stackrel{+1}{\longrightarrow}\) 7 \(\stackrel{+1}{\longrightarrow}\) 8
\(y\) -5 -6 \( \stackrel{-1}{\longrightarrow}\\) -7\( \stackrel{-1}{\longrightarrow}\\) -8\( \stackrel{-1}{\longrightarrow}\)


So the slope is:

\(\frac{\text { Change in } y}{\text { Change in } x}=\frac{-1}{1}=-1\)

The slope is \(-1\).


2. The slope is \(7\).

\(\text { Slope }=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Change in } y}{\text { Change in } x}\)

We can calculate the change in \(x\) and change in \(y\) by picking any two pairs of corresponding \(x\)- and \(y\)-values.

\(x\) -7 \(\stackrel{+3}{\longrightarrow}\) -4 \(\stackrel{+3}{\longrightarrow}\) -1 \(\stackrel{+3}{\longrightarrow}\) 2
\(y\) -7 14 \( \stackrel{+21}{\longrightarrow}\\) 35 \( \stackrel{+21}{\longrightarrow}\\) 56 \( \stackrel{+21}{\longrightarrow}\)


So the slope is:

\(\frac{\text { Change in } y}{\text { Change in } x}=\frac{21}{3}=7\)

The slope is \(7\).


3. The slope is \(3\).

\(\text { Slope }=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Change in } y}{\text { Change in } x}\)

We can calculate the change in \(x\) and change in \(y\) by picking any two pairs of corresponding \(x\)- and \(y\)-values.

\(x\) -4 \(\stackrel{+1}{\longrightarrow}\) -3 \(\stackrel{+1}{\longrightarrow}\) -2 \(\stackrel{+1}{\longrightarrow}\) -1
\(y\) 2 5 \( \stackrel{+3}{\longrightarrow}\\) 8 \( \stackrel{+3}{\longrightarrow}\\) 11 \( \stackrel{+3}{\longrightarrow}\)


So the slope is:

\(\frac{\text { Change in } y}{\text { Change in } x}=\frac{3}{1}=3\)

The slope is \(3\).


4. The slope is \( -\frac {2}{5}\)

\(\text { Slope }=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Change in } y}{\text { Change in } x}\)

We can calculate the change in \(x\) and change in \(y\) by picking any two pairs of corresponding \(x\)- and \(y\)-values.

\(x\) 31 \(\stackrel{+5}{\longrightarrow}\) 36 \(\stackrel{+5}{\longrightarrow}\) 41 \(\stackrel{+5}{\longrightarrow}\) 46
\(y\) 10 8 \( \stackrel{-2}{\longrightarrow}\\) 6 \( \stackrel{-2}{\longrightarrow}\\) 4 \( \stackrel{-2}{\longrightarrow}\)


So the slope is:

\(\frac{\text { Change in } y}{\text { Change in } x}=\frac{-2}{5}=-\frac{2}{5}\)

The slope is \( -\frac {2}{5}\).