Encapsulation and Polymorphism

_/
— SOFTWARE UNIVERSITY

- Nt FOUNDATION

=—

SoftUni Team
Technical Trainers

Software University
http://softuni.bg

Encapsulation, Polymorphism, Class
Hierarchies, Cohesion and Coupling

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/

_/

Contents e (4 FOUNDATION

1. Encapsulation
2. Polymorphism
3. Class Hierarchies: Real World Example

4. Cohesion and Coupling

N |
_ — SOFTWARE UNIVERSITY

— Nt FOUNDATION

Encapsulation

_/
— SOFTWARE UNIVERSITY

Encapsulation ~(&! FOUNDATION

" Encapsulation hides the implementation details

= Class announces only a few operations (methods) available for
its clients — its public interface

= All data members (fields) of a class should be hidden

= Accessed via properties (read-only and read-write)

= No interface members should be hidden

" Encapsulation == hide (encapsulate) data behind constructors
and properties

_/

Encapsulation — Example (4 FOUNDATION

= Data fields are private
" Constructors and accessors are defined (getters and setters)

Person

-name : string
-age : int

+Person(string name, int age)
+Name : string { get; set; }
+Age : TimeSpan { get; set; }

_/

Encapsulation in C# (4 FOUNDATION

" Fields are always declared private
= Accessed through properties in read-only or read-write mode
= Properties perform checks to fight invalid data
= Constructors are declared public
= Constructors perform checks to keep the object state valid
" Interface methods are always public
= Not explicitly declared with public
= Non-interface methods are declared private / protected

_/
- (— SOFTWARE UNIVERSITY

Encapsulation — Benefits (4} FOUNDATION

" Ensures that structural changes remain local

= Changing the class internals does not break any outside code

= Allows changing the internal class implementation

" Encapsulation allows adding logic when accessing object data
= E.g. validations on when a property is modified
= E.g. notifications about changes (allows data binding)

" Hiding implementation details reduces complexity

= Easier maintenance

_/
— SOFTWARE UNIVERSITY

Encapsulation — Example ~(&! FOUNDATION

public class Person

{ The field "name" is
private string name; encapsulated (hidden)
public string Name
{ get { return this.name; }

set
{

if (value == null)
throw new ArgumentException("Invalid person name.");
this.name = value;

}
}
}

_/

| - — SOFTWARE UNIVERSITY
/@/FOUNDATION

Encapsulation

Live Demo

_/

— ()~ SOFTWARE UNIVERSITY
/@/FOUNDATK)N

Exercise in Class

_/
- (— SOFTWARE UNIVERSITY

—— Nt FOUNDATION

Shape
<<abstract>>
-color
+getArea() Abstract method has
+toString () definition only

Rectangle Triangle

-length -base
-width -height
+getArea() +gEtApea{).___qSUbEHSSESpHﬂﬁdE
+toString () +toString() actual Implementation

Polymorphism

_/
— SOFTWARE UNIVERSITY

Polymorphism ~(&! FOUNDATION

" Polymorphism = the ability to take more than one form
(objects have more than one type)

=AcC
=AcC

ass can be used through its parent interface

nild class may override (change) some of the parent's methods

" Polymorphism allows invoking abstract operations

= Defined in the base class / interface

= Implemented in the child classes

= Declared as abstract or virtual orinside an interface

12

Polymorphism — Example

N |
[Abstract class J/

|

Concrete class W\,\

Figure

_/
- — SOFTWARE UNIVERSITY

Nt FOUNDATION

+CalcSurface() : double —

Abstract action }

U

[Overriden action }

AN AN
Square Circle
-X : int -X : int
-y : int -y : int
-size : int -radius : int
+CalcSurface() +CalcSurface()

/

[Overriden action }

{
}

X

¥
public override double CalcSurface()

return size * size;

/

{
}

4
public override double CalcSurface()

return Math.PI * radius * raduis;

13

_/
Polymorphism — Example (2) ~(&) FOUNDATION
abstract class Figure
{
public abstract double CalcSurface();
}

class Square
{ public override double CalcSurface() { return size * size; } }

class Circle
{ public override double CalcSurface() { return PI * r * r; } }

Figure f1 = new Square(..);
Figure f2 = new Circle(..);

double surface = fl.CalcSurface(); // Call Square.CalcSurface()
double surface = f2.CalcSurface(); // Call Circle.CalcSurface()

14

]

Circle F=
Clazs
= Figure
= Properties
& FRadius
= Methods

@ CalcSurface

Abstract Class

= Methods

Rectangle

Clazs

=+ Figure

= Properties
& Height
& Width
=l Methods

@ CalcSurface

Square

I:I:ﬁﬁ

= Figure

= Properties
& Size

= Methods

B CalcSurface

Polymorphism

Live Demo

\ [/
~(4

/7

— SOFTWARE UNIVERSITY

FOUNDATION

_/
— SOFTWARE UNIVERSITY

Polymorphism — Why? ~(&! FOUNDATION

= Why handle an object of given type as object of its base type?
= To invoke abstract operations implemented in the child classes

= To mix different data types in the same collection
« E.g. List<Figure> can hold Circle and Rectangle objects

= To pass more specific object to a method that expects a more
generic type (e.g. SchoolStudent instead of Student)

= To declare a more generic field which will be initialized and
"specialized" later (in a subclass)

_/
— SOFTWARE UNIVERSITY

Virtual Methods ~(&) FOUNDATION

= A virtual method is:

= Defined in a base class and can be changed (overridden) in the
descendant classes

= Virtual methods are declared through the keyword virtual

public virtual void Draw() { .. }

= Methods declared as virtual in a base class can be overridden
using the keyword override

public override void Draw() { .. }

17

Virtual Methods — Example -

— SOFTWARE UNIVERSITY

FOUNDATION

abstract class Figure

{
public virtual void Draw()
{
Console.WriteLine(
"I am a figure of type: {0}", this.GetType().Name);
}
}
class Circle : Figure
{
public override void Draw()
{
Console.WriteLine("I am a circle");
}

18

_/

Calling Base Virtual Methods — Example ~(&) FOUNDATION

class Circle : Figure

{
public override void Draw()
{
Console.WriteLine("I am a circle:");
Console.WriteLine(" --- ");
Console.WriteLine("| |");
Console.WriteLine(" --- ");
}
}
class SpecialCircle : Circle
{
public override void Draw()
{
Console.WriteLine("I am a special circle.");
base.Draw();
}

19

_/

- SOFTWARE UNIVERSITY

e ——— L - ,@;FOUNDAHON

e
-

SC
=

Virtual Methods

Live Demo

_/

More about Virtual Methods "@f&ﬁﬁ%ﬂﬁ%ﬁ

= Abstract methods are purely virtual
= [f a method is abstract =2 itis virtual as well
= Abstract methods are designed to be changed (overridden) later

" Interface members are also purely virtual (abstract)

= They have no default implementation and are designed to be
overridden in descendant classes

" Virtual methods can be hidden through the new keyword:

public new double CalculateSurface() { return .. }

21

_/
— SOFTWARE UNIVERSITY

The override Modifier ~&! FOUNDATION

= Use override to modify a method or property
= Provide a replacement implementation for the inherited member

= You cannot override a non-virtual or static method

" The overridden base method must be one of the following:

= virtual
= abstract a
- override - d

= (interface method)

22

_/
- (— SOFTWARE UNIVERSITY

Polymorphism — How It Works? (&) FOUNDATION

" Polymorphism ensures that the appropriate method of the
subclass is called through its base class' interface

" |n C++, C#, Java polymorphism is implemented using a
technique called "late binding"

= The exact method to be called is determined at runtime

= Just before performing the call

= Applied for all abstract / virtual methods

" Note: late binding is a bit slower than normal (early) binding

Class Hierarchies:
Real World Examples

—

_/

) SOFTWARE UNIVERSITY
%OUNDATK)N

Real World Example: Calculator (4 FOUNDATION

" Creating an application like the Windows Calculator

= Typical scenario for applying the object-oriented approach

| Calculator

View Edit Help

Exp || Mod || log || 10%

25

_/

Real World Example: Calculator (2) (4 FOUNDATION

= The calculator consists of controls:
= Buttons, text boxes, menus, check boxes, panels, etc.

" Class Control —the root of our OO hierarchy

= All controls can be painted on the screen

= Should implement an interface IPaintable with a method
Paint(surface)

= Common control properties:

= Location, size, text, face color, font, background color, etc.

26

_/

Real World Example: Calculator (3) (4 FOUNDATION

" Some controls could contain other (nested) controls inside

= E.g. panels and toolbars can hold other controls

= Class Container — extends Control, holds a list of child controls
" The Calculator itselfisa Form

= Formis a special kind of Container

= Forms hold also border, title, icon and system buttons

= The form title is the text derived from Control
" How does Calculator paint itself?

= Invokes Paint () for all child controls inside it

27

_/

Real World Example: Calculator (4) (4 FOUNDATION

* How does a Container paint itself?

= Invokes Paint () for all controls inside it (chain of responsibility)
= Each control knows how to visualize (paint) itself
= Buttons, check boxes and radio buttons are similar

= Can be pressec

= Can be focuseo

= All buttons could derive from a common parent class
AbstractButton

28

Calculator Classes

_«interfacen |
IPaintable

Paint()

AN

Control

-location
-size
-text
-bgColor
-faceColor
-font

JYANWANYAN

— SOFTWARE UNIVERSITY

\N [/
‘@jOUNDAﬂON

Container AbstractButton TextBox MainMenu MenuItem
i . |
Panel Form Button CheckBox RadioButton

AN

Calculator

29

_/

— ()~ SOFTWARE UNIVERSITY
/@/FOUNDATK)N

Exercise in Class

_/
- (— SOFTWARE UNIVERSITY

Nt FOUNDATION

Cohesion and Coupling

_/

Cohesion ~(&) FOUNDATION

" Cohesion describes

= How closely the routines in a class or the code in a routine
support a central purpose

= Cohesion must be strong

= Well-defined abstractions keep cohesion strong

= Classes must contain strongly related functionality and aim for
single purpose

= Cohesion is a powerful tool for managing complexity

32

Good and Bad Cohesion et ‘@f&ﬁﬁ%’ﬂﬁ%ﬁ

= Good cohesion: HDD, CR-ROM, remote control

33

_/

Strong Cohesion (4 FOUNDATION

= Strong cohesion (good cohesion) example:
= Class Math that has methods:

Sin(), Cos(),Asin(), Sgrt(), Pow(), Exp(), Math.PI, Math.E

double sideA = 40, sideB = 69;
double angleAB = Math.PI / 3;

double sideC = sideA * sideA + sideB * sideB -
2 * sideA * sideB * Math.Cos(angleAB);

double sidesSqgrtSum =
Math.Sqrt(sideA) + Math.Sgrt(sideB) + Math.Sqrt(sideC);

34

_/
- (— SOFTWARE UNIVERSITY

Weak Cohesion (&) FOUNDATION

" \Weak cohesion (bad cohesion) example

= Class Magic that has these methods:

public void PrintDocument(Document d);
public void SendEmail(

string recipient, string subject, string text);
public void CalculateDistanceBetweenPoints(

int x1, int yl, int x2, int y2)

= Another example:

MagicClass.MakePizza("Fat Pepperoni”);
MagicClass.WithdrawMoney("999e6");
MagicClass.OpenDBConnection();

35

_/
- (— SOFTWARE UNIVERSITY

Coupling (4} FOUNDATION

= Coupling describes how tightly a class or a routine is related to
other classes or routines

" Coupling must be kept loose
= Modules must depend little on each other
= Or be entirely independent (loosely coupled)

= All classes / routines must have small, direct, visible, and flexible
relationships to other classes / routines

= One module must be easily used by other modules

36

Loose and Tight Coupling (4 FOUNDATION

" Loose coupling:
= Easily replace old HDD

= Easily place this HDD to another motherboard

" Tight coupling:

= Where is the video card?

i %‘-‘ ' ‘!'] ‘:" \ e
¥ .0%3109) - 9

= Can you change the audio controller?

37

_/
— SOFTWARE UNIVERSITY

Loose Coupling — Example ~(&! FOUNDATION

class Report : IReport

public bool LoadFromFile(string fileName) {..}
public bool SaveToFile(string fileName) {..}

}

class Printer

{

) public static int Print(IReport report) {..}

class Program

static void Main()

{
Report myReport = new Report();
myReport.LoadFromFile(@"C:\Reports\DailyReport.xml");
} Printer.Print(myReport);

38

Tight Coupling — Example

—

_/
— SOFTWARE UNIVERSITY

Nt FOUNDATION

class MathParams

{

public static double operand;
public static double result;

}
class Mathutil

public static void Sqgrt()

MathParams.result = CalcSgrt(MathParams.operand);

}
}
class MainClass
{

static void Main()

MathParams.operand = 64;
Mathutil.Sqgrt();
Console.WriteLine(MathParams.result);

39

Spaghetti Code ~(&) FOUNDATION

= Combination of bad cohesion and tight coupling:

class Report
{
public void Print() {..}
public void InitPrinter() {..}
public void LoadPrinterDriver(string fileName) {..}
public bool SaveReport(string fileName) {..}
public void SetPrinter(string printer) {..}
}
class Printer
{
public void SetFileName() {..}
public static bool LoadReport() {..}
public static bool CheckReport() {..}
}

40

_/

— ()~ SOFTWARE UNIVERSITY
/@/FOUNDATK)N

Exercise in Class

_/

— (— SOFTWARE UNIVERSITY
Summary %OUNDATION

= Encapsulation hides internal data

= Access through constructors and properties SVMMQP}

= Keeps the object state valid —————\;‘ f; S
" Polymorphism == using objects through \, £

\®

their parent interface \
= Allows invoking abstract actions overridden in a child class

= Strong cohesion == single purpose

" Loose coupling == minimal interaction with others

"OOP - Encapsulation-and Polymorphism (&) FUNDATION

¢ SBlech
xsso Fth - e SOCIAL MEDIA MARKETING AT SCALE

A\

'(ﬁ\) SoftwareGroup ‘BG I <LUXOFT ||\|DEA\/R
Serving the high achievers

HoBo nokoaeHue xocmuH2 V

https://softuni.bg/courses/oop/

http://softuni.bg/
http://softuni.org/
http://www.nakov.com/
http://forum.softuni.bg/
http://judge.softuni.bg/
https://www.facebook.com/SoftwareUniversity
https://twitter.com/softunibg
http://www.youtube.com/SoftwareUniversity
http://www.introprogramming.info/
http://www.vivacom.bg/
http://xs-software.com/
http://www.sbtech.com/
http://komfo.com/
http://smartit.bg/
http://www.softwaregroup-bg.com/
http://www.superhosting.bg/
https://softuni.bg/courses/oop/

°® - \(" — SOFTWARE UNIVERSITY
License ,%/FOUNDATION

" This course (slides, examples, demos, videos, homework, etc.)
is licensed under the "Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International” license

= Attribution: this work may contain portions from

= "Fundamentals of Computer Programming with C#" book by Svetlin Nakov & Co. under CC-BY-SA license

= "OOP" course by Telerik Academy under CC-BY-NC-SA license

44

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.introprogramming.info/english-intro-csharp-book/
http://creativecommons.org/licenses/by-sa/4.0/
https://telerikacademy.com/Courses/Courses/Details/159
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Free Trainings @ Software University

= Software University Foundation — softuni.org

= Software University — High-Quality Education,
Profession and Job for Software Developers

= softuni.bg

= Software University @ Facebook

= facebook.com/SoftwareUniversity

= Software University @ YouTube

= yvoutube.com/SoftwareUniversity

= Software University Forums — forum.softuni.bg

_/
o — SOFTWARE UNIVERSITY

{&! FOUNDATION

-

SOFTWARE
UNIVERSITY

P

You Tube

I

FORUM

http://softuni.org/
http://softuni.bg/
https://www.facebook.com/SoftwareUniversity
http://www.youtube.com/SoftwareUniversity
http://forum.softuni.bg/
http://softuni.bg/
http://softuni.org/
http://www.facebook.com/SoftwareUniversity
http://www.youtube.com/SoftwareUniversity
http://forum.softuni.bg/

