Creating Box and Whisker Plots Exercises
Site: | Saylor Academy |
Course: | RWM101: Foundations of Real World Math copy 1 |
Book: | Creating Box and Whisker Plots Exercises |
Printed by: | Guest user |
Date: | Wednesday, May 14, 2025, 2:00 AM |
Description

Creating Box and Whisker Plots Exercises
Complete this assessment to practice creating box and whisker plots. Be sure to check your answers.
- Which data set could be represented by the box plot shown below?
Choose 1 answer:
- \(54, 60, 65, 66, 67, 69, 70, 72, 73, 75, 75\)
- \(54, 60, 65, 66, 67, 70, 70, 72, 73, 75, 76\)
- \(54, 60, 63, 66, 67, 68, 70, 72, 73, 75, 76\)
- \(53, 60, 65, 66, 67, 69, 70, 72, 73, 75, 76\)
- The data below represents the number of pages each student in Ashwin's class read during reading time.
\(16, 16, 16, 20, 21, 21, 23, 25, 26, 26, 28, 28\)
Which box plot correctly summarizes the data?
Choose 1 answer:
- Which data set could be represented by the box plot shown below?

- \(1, 3, 6, 8, 10, 12, 13, 13, 16, 18, 19\)
- \(1, 3, 6, 8, 10, 11, 13, 13, 18, 18, 19\)
- \(1, 3, 6, 8, 10, 12, 13, 13, 16, 18, 20\)
- \(1, 3, 6, 8, 10, 11, 13, 13, 16, 18, 19\)
- The data below represents the number of customers at each Slurpee Sam's Spaghetti Shop.
\(24, 25, 29, 30, 31, 31, 32, 34, 34\)
Which box plot correctly summarizes the data?
Choose 1 answer:
Source: Khan Academy, https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-data-statistics/cc-6th-box-whisker-plots/e/box-plots This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License
Answers
-
(b)
The minimum of the box plot is 54.
We can eliminate one of the data sets because it does not have a minimum of 54.
\(53, 60,65, 66, 67, 69, 70, 72, 73, 75, 76\)
The median of the box plot is 69.
We can eliminate two of the data sets because they do not have a median to 69.
\(54, 60, 65, 66, 67, 70, 72, 73, 75, 76\)
\(54, 60, 63, 66, 67, 68, 72, 73, 75, 76\)
The following data set could be represented by the box plot.
\(54, 60, 65, 66, 67, 69, 70, 72, 73, 75, 76\)
-
(b)
-
(a)
The maximum of the box plot is 19.
We can eliminate one of the data sets because it does not have a maximum of 19
\(1, 3, 6, 8, 10, 11, 13, 13, 16, 18, 20\)
The median of the box plot is 12.
We can eliminate two of the data sets because they do not have a median of 12
\(1, 3, 6, 8, 10, 11, 13, 13, 16, 18, 19\)
\(1, 3, 6, 8, 10, 11, 13, 13, 18, 18, 19\)
The following data set could be represented by the box plot.
\(1, 3, 6, 8, 10, 12, 13, 13, 16, 18, 19\)
-
(a)
\(24, 25, 29, 30, 31, 31, 32,34, 34\)
Min = 24
Media = 31
Max = 34
\(24, 25, 29, 30, 31, 31, 32,34, 34\)
\(Q_1 = \frac{25+29}{1}=27\)
\(Q_3 = \frac{32+34}{2}=33\)
The following box plot correctly summarizes the data.