Practice with the Quadratic Formula
Site: | Saylor Academy |
Course: | GKT101: General Knowledge for Teachers – Math |
Book: | Practice with the Quadratic Formula |
Printed by: | Guest user |
Date: | Tuesday, May 13, 2025, 11:16 PM |
Description
Complete these exercises and check your answers.
Exercises
Practice Makes Perfect
Solve Quadratic Equations Using the Quadratic Formula
In the following exercises, solve by using the Quadratic Formula.
99. \(4 m^{2}+m-3=0\)
101. \(2 p^{2}-7 p+3=0\)
103. \(p^{2}+7 p+12=0\)
105. \(r^{2}-8 r-33=0\)
107. \(3 u^{2}+7 u-2=0\)
109. \(2 a^{2}-6 a+3=0\)
111. \(2 x^{2}+3 x+9=0\)
113. \(v(v+5)-10=0\)
115. \(\frac{1}{3} m^{2}+\frac{1}{12} m=\frac{1}{4}\)
117. \(16 c^{2}+24 c+9=0\)
119. \(5 m^{2}+2 m-7=0\)
121. \(p^{2}-6 p-27=0\)
123. \(4 r^{2}+3 r-5=0\)
125. \(2 a^{2}+12 a+5=0\)
127.\(\frac{3}{4} b^{2}+\frac{1}{2} b=\frac{3}{8}\)
129. \(2 x^{2}+12 x-3=0\)
Source: Rice University, https://openstax.org/books/elementary-algebra-2e/pages/10-3-solve-quadratic-equations-using-the-quadratic-formula
This work is licensed under a Creative Commons Attribution 4.0 License.
Answers
99. \(m=-1, m=\frac{3}{4}\)
101. \(p=\frac{1}{2}, p=3\)
103. \(p=-4, p=-3\)
105. \(r=-3, r=11\)
107. \(u=\frac{-7 \pm \sqrt{73}}{6}\)
109. \(a=\frac{3 \pm \sqrt{3}}{2}\)
111. no real solution
113. \(v=\frac{-5 \pm \sqrt{65}}{2}\)
115. \(m=-1, m=\frac{3}{4}\)
117. \(c=-\frac{3}{4}\)
119. \(m=-\frac{7}{5}, m=1\)
121. \(p=-3, p=9\)
123. \(r=\frac{-3 \pm \sqrt{89}}{8}\)
125. \(a=\frac{-6 \pm \sqrt{26}}{2}\)
127. \(b=\frac{-2 \pm \sqrt{22}}{6}\)
129. \(x=\frac{-6 \pm \sqrt{42}}{4}\)