Practice with Solving and Graphing Inequalities
Site: | Saylor Academy |
Course: | GKT101: General Knowledge for Teachers – Math |
Book: | Practice with Solving and Graphing Inequalities |
Printed by: | Guest user |
Date: | Tuesday, May 13, 2025, 11:16 PM |
Description
Complete these exercises and check your answers.
Solve and Graph Inequalities
Draw a graph for each inequality and give interval notation.
1. \(n>-5\)
3. \(-2 \geqslant k\)
5. \(5 \geqslant x\)
Write an inequality for each graph.
7.
9.
11.
Solve each inequality, graph each solution, and give interval notation.
13. \(\frac{x}{11} \geqslant 10\)
15. \(2+r<3\)
17. \(8+\frac{n}{3} \geqslant 6\)
19. \(2>\frac{a-2}{5}\)
21. \(-47 \geqslant 8-5 x\)
23. \(-2(3+k)<-44\)
25. \(18<-2(-8+p)\)
27. \(24 \geqslant-6(m-6)\)
29. \(-r-5(r-6)<-18\)
31. \(24+4 b<4(1+6 b)\)
33. \(-5 v-5<-5(4 v+1)\)
35. \(4+2(a+5)<-2(-a-4)\)
37. \(-(k-2)>-k-20\)
Source: Tyler Wallace, http://www.wallace.ccfaculty.org/book/Beginning_and_Intermediate_Algebra.pdf This work is licensed under a Creative Commons Attribution 3.0 License.
Answers
1. \(n > -5\)
(\(-5, 0\))
3. \(-2 \geq k\)
\(( -\infty, - 2) \)
5. \(5 \geq x\)
\( (-\infty, 5) \)
7. \(x < -2\)
9. \(x \geq 5\)
11. \(x > -2\)
13.
\(\text { (11) } \frac{x}{11} \geq 10(11)\)
\(x \geq 110\)
\(( 110, \infty )\)
15.
\(\begin{array}{r}
2+r < 3 \\
\underline {-2 \quad-2} \\
r < 1
\end{array}\)
\( (-\infty, 1)\)
17.
\(\begin{gathered}
8+\frac{n}{3} \geq 6 \\
\underline {-8 \quad-8} \\
\text { (3) } \frac{n}{3} \geq-2(3) \\
n \geq-6
\end{gathered}\)
\( (-6, \infty) \)
19.
\(\begin{aligned}
(5) 2 > \frac{a-2}{5}(5) \\
10 > a-2 \\
\underline {+2 \quad+2} \\
12 > a
\end{aligned}\)
\( (-\infty, 12) \)
21.
\(\begin{aligned}
-47 \geq 8-5 x \\
\frac{-8-8}{-\frac{55}{-5} \geq-\frac{5 x}{-5}} \\
11 \leq x
\end{aligned}\)
\( (11, \infty) \)
23.
\(\begin{aligned}
-2(3+k) & < -44 \\
-6-2 k & < -44 \\
\underline {+6 \quad +6} \\
-\frac{2 k}{-2} & < -\frac{38}{-2} \\
k & > 19
\end{aligned}\)
\( (19, \infty) \)
25.
\(\begin{aligned}
& 18 < -2(-8+p)\\
& 18 < 16-2 p\\
& \frac{-16-16}{\frac{2}{-2} < -\frac{2 p}{-2}}\\
& -1 > p
\end{aligned}\)
\( (- \infty, -1) \)
27.
\(\begin{aligned}
&24 \geq-6(m-6)\\
&24 \geq-6 m+36\\
&\frac{-36-36}{-\frac{12}{-6} \geq-\frac{6 m}{-6}}\\
&2 \leq m
\end{aligned}\)
\( (2, \infty) \)
29.
\(\begin{aligned}
-r-5(r-6) & < -18 \\
-r-5 r+30 & < -18 \\
-6 r+30 & < -18 \\
\underline {-30 -30} \\
-\frac{6 r}{-6} & < -\frac{48}{-6} \\
r &>8
\end{aligned}\)
\( (8, \infty) \)
31.
\(\begin{aligned}
24+4 b & < 4(1+6 b) \\
24+4 b & < 4+24 b \\
\underline {-4 b -4 b} \\
24 & < 4+20 b \\
\underline {-4 -4} \\
\frac{20}{20} & < \frac{20 b}{20} \\
1 & < b
\end{aligned}\)
\( (1, \infty) \)
33.
\(\begin{aligned}
-5 v-5 & < -5(4 v+1) \\
-5 v-5 & < -20 v-5 \\
\underline {+20 v +20 v} \\
15 v-5 & < -5 \\
\underline {+5 +5} \\
15 v & < 0 \\
v & < 0
\end{aligned}\)
\( (- \infty, 0) \)
35.
\(\begin{gathered}
4+2(a+5) < -2(-a-4) \\
4+2 a+10 < 2 a+8 \\
14+2 a < 2 a+8 \\
\underline {-2 a-2 a} \\
14 < 8 \\
\text { false } \\
\text { No solution } \emptyset
\end{gathered}\)
37.
\(\begin{gathered}
\begin{array}{c}
-(k-2) > -k-20 \\
-k+2 > -k-20 \\
\underline {+k +k}
\end{array} \\
\begin{array}{c}
2 > -20 \\
\text { true }
\end{array} \\
\text { All real numbers } \mathbb{R}
\end{gathered}\)