Two-step equations
Site: | Saylor Academy |
Course: | GKT101: General Knowledge for Teachers – Math |
Book: | Two-step equations |
Printed by: | Guest user |
Date: | Tuesday, May 13, 2025, 11:31 PM |
Description
Two-step equations can also be solved by "undoing" each operation by applying its inverse to both sides of the equation. Watch this lecture series and complete the interactive exercises.
Intro to two-step equations
Source: Khan Academy, https://www.khanacademy.org/math/algebra-home/alg-basic-eq-ineq#alg-two-steps-equations-intro
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Two-step equations intuition
Worked example: two-step equations
Describing steps when solving equations
Two-step equations - Questions
1. Solve for \(p\).
\(9(p−4)=−18\)
2. Solve for \(m\).
\(13=2m+5\)
3. Solve for \(y\).
\(6=2(y+2)\)
4. Solve for \(g\).
\(3=\frac{g}{-4}-5\)
5. Solve for \(z\).
\(42=−7(z−3)\)
6. Solve for \(d\).
\(41=12d−7\)
7. Solve for \(q\).
\(3(q−7)=27\)
Answers
1. \(p = 2\)
Let's divide and then add to get \(p\) by itself.
\( 9(p-4)=-18 \)
divide each side by \(9\)
\(\begin{array}{r}
\frac{9(p-4)}{9}=\frac{-18}{9} \\
\frac{g(p-4)}{9}=\frac{-18}{9} \\
p-4=\frac{-18}{9}
\end{array}\)
\(p−4 = - 2\)
add \(4\) to each side to get \(p\) by itself
\(\begin{array}{r}
p-4+4=-2+4 \\
p-4+4=-2+4 \\
p=-2+4
\end{array}\)
The answer: \(p = 2\)
Let's check our work!
\(\begin{array}{r}
9(p-4)=-18 \\
9(2-4) \stackrel{?}{=}-18 \\
9(-2) \stackrel{?}{=}-18 \\
-18=-18 \text { Yes! }
\end{array}\)
2. \(m = 4\)
Let's subtract and then divide to get \(m\) by itself.
\(13=2m+5\)
subtract \(5\) from each side
\(\begin{aligned}
&13-5=2 m+5-5 \\
&13-5=2 m+5-\not 5 \\
&13-5=2 m
\end{aligned}\)
\(8 = 2m\)
divide each side by \(2\) to get \(m\) by itself
\(\begin{aligned}
&\frac{8}{2}=\frac{2 m}{2} \\
&\frac{8}{2}=\frac{2 m}{2} \\
&\frac{8}{2}=m
\end{aligned}\)
The answer: \(m = 4\)
Let's check our work!
\(\begin{aligned}
&13=2 m+5 \\
&13 \stackrel{?}{=} 2(4)+5 \\
&13 \stackrel{?}{=} 8+5 \\
&13=13 \quad \text { Yes! }
\end{aligned}\)
3. \(y = 1\)
Let's divide and then subtract to get \(y\) by itself.
\(6=2(y+2)\)
divide each side by \(2\)
\(\begin{aligned}
&\frac{6}{2}=\frac{2(y+2)}{2} \\
&\frac{6}{2}=\frac{2(y+2)}{2} \\
&\frac{6}{2}=y+2
\end{aligned}\)
\(3 = y +2 \)
subtract \(2\) to get \(y\) by itself
\(\begin{aligned}
&3-2=y+2-2 \\
&3-2=y+\not 2-2 \\
&3-2=y
\end{aligned}\)
The answer: \(y = 1\)
Let's check our work!
\(\begin{aligned}
&6=2(y+2) \\
&6 \stackrel{?}{=} 2(1+2) \\
&6 \stackrel{?}{=} 2(3) \\
&6=6 \quad \text { Yes! }
\end{aligned}\)
4. \(g = -32\)
Let's add and then multiply to get \(g\) by itself.
\(3=\frac{g}{-4}-5\)
add \(5\) to each side
\(\begin{aligned}
&3+5=\frac{g}{-4}-5+5 \\
&3+5=\frac{g}{-4}-5+5 \\
&3+5=\frac{g}{-4}
\end{aligned}\)
\(8=\frac{g}{-4}\)
multiply each side by −4 to get \(g\) by itself
\(8 \cdot-4=\frac{g}{-4} \cdot-4\)
\(8 \cdot-4=\frac{g}{-\not 4} \cdot -\not 4\)
\(8 \cdot-4=g\)
Let's check our work!
\(\begin{aligned}
&3=\frac{g}{-4}-5 \\
&3 \stackrel{?}{=} \frac{-32}{-4}-5 \\
&3 \stackrel{?}{=} 8-5 \\
&3=3 \quad \text { Yes! }
\end{aligned}\)
5. \( z = -3 \)
Let's divide and then add to get \(z\) by itself.
\(42=−7(z−3)\)
divide each side by \(−7\)
\(\begin{aligned}
&\frac{42}{-7}=\frac{-7(z-3)}{-7} \\
&\frac{42}{-7}=\frac{7(z-3)}{-7} \\
&\frac{42}{-7}=z-3
\end{aligned}\)
\( -6 = z - 3\)
add \(3\) to each side to get \(z\) by itself
\(\begin{aligned}
&-6+3=z-3+3 \\
&-6+3=z-\not 3+ \not 3 \\
&-6+3=z
\end{aligned}\)
The answer: \(z = -3\)
Let's check our work!
\(\begin{aligned}
&42=-7(z-3) \\
&42 \stackrel{?}{=}-7(-3-3) \\
&42 \stackrel{?}{=}-7(-6) \\
&42=42 \quad \text { Yes! }
\end{aligned}\)
6. \(d = 4\)
Let's add and then divide to get \(d\) by itself.
\(41=12d−7\)
add \(7\) to each side
\(\begin{aligned}
&41+7=12 d-7+7 \\
&41+7=12 d-\not 7+ \not 7 \\
&41+7=12 d
\end{aligned}\)
\(48 = 12d\)
\(\begin{aligned}
&\frac{48}{12}=\frac{12 d}{12} \\
&\frac{48}{12}=\frac{ \not {12} d}{\not {12}} \\
&\frac{48}{12}=d
\end{aligned}\)
The answer: \(d = 4\)
Let's check our work!
\(\begin{aligned}
&41=12 d-7 \\
&41 \stackrel{?}{=} 12(4)-7 \\
&41 \stackrel{?}{=} 48-7 \\
&41=41 \quad \text { Yes! }
\end{aligned}\)
7. \( q = 16\)
Let's divide and then add to get \(q\) by itself.
\(3(q−7)=27\)
divide each side by \(3\)
\(\begin{aligned}
&\frac{3(q-7)}{3}=\frac{27}{3}\\
&\frac{\not 3(q-7)}{\not 3}=\frac{27}{3}\\
&q-7=\frac{27}{3}
\end{aligned}\)
\(q - 7 = 9 \)
add \(7\) to each side to get \(q\) by itself
\(\begin{array}{r}
q-7+7=9+7 \\
q-7+7=9+7 \\
q=9+7
\end{array}\)
The answer: \( q = 16\)
Let's check our work!
\(\begin{aligned}
3(q-7) &=27 \\
3(16-7) & \stackrel{?}{=} 27 \\
3(9) & \stackrel{?}{=} 27 \\
27 &=27 \quad \text { Yes! }
\end{aligned}\)