Applications of Proportions Exercises

Applications of Proportions

Answers

1. On a road map, the scale indicates that \(1 \mathrm{~cm}\) represents \(60\) miles. If the measured distance between two cities on the map is \(6.7 \mathrm{~cm}\), how many miles apart are they?

 \(\begin{align} \text { Proportion } \Longrightarrow \dfrac{1 \mathrm{~cm}}{60 \text { miles }}=\dfrac{6.7 \mathrm{~cm}}{\text {k miles }} \end{align}\)

\(
\begin{array}{r}
4 \, \, \, \, \\
6.7 \\
\times 60 \\
\hline 402.0
\end{array}
\)

 \(
\begin{aligned}
&\dfrac{1}{60}=\dfrac{6.7}{x} \qquad \qquad LCD=10 \\
\\
&\dfrac{1}{60}=\dfrac{10(6.7)}{10(x)} \\
\\
&\dfrac{1}{60}=\dfrac{67}{10 x} \\
\\
&10 x=402 \\
\\
&\dfrac{10 x}{10} =\dfrac{402}{10} \\
\\
 &x=40.2 \text { miles }
\end{aligned}
\)


2. Suppose a truck travels at \(55 \mathrm{mph}\). How many miles will the truck travel in \(8\) hours?

\(
\text { Proportion } \Longrightarrow \dfrac{55 \text { miles }}{1 \text { hour }}=\dfrac{x \text { miles }}{8 \text { hours }}
\)
\(
\begin{array}{r}
4 \, \, \,
\\
55\\
\times \quad 8 \\
\hline 440
\end{array}
\)
\(
\begin{aligned}
&\dfrac{55}{1}=\dfrac{x}{8} \\
\\
&440=x \\
\\
&\text { Therefore } x=440 \text { miles }
\end{aligned}
\)

3. A recipe calls for \(3\) cups of milk for \(8\) servings. How many cups of milk are needed to make \(6\) servings?

\(\text {Proportion}\Rightarrow \dfrac{3 \text { cups }}{8 \text { servings }}=\dfrac{x \text { cups }}{6 \text { servings}}\)

\(\begin{aligned}&\dfrac{3}{8}=\dfrac{x}{6} \\ \\&\dfrac{18}{8}=\dfrac{8 x}{8} \\ \\ &\dfrac{18}{8}=x \\ &x=\dfrac{18 / 2}{8 / 2} \\ \\ &x=\dfrac{9}{4} \text { cups } \\ \\ &=\text { - or - } \\ \\&x=2 \dfrac{1}{4} \text { cups }\end{aligned}\)


4. At a local college, the cost per unit of instruction is \(\$24.00\). If a student plans to take \(27.5\) units during the next two semesters, how much will the student pay for tuition?

\(\text {Proportion} \Rightarrow \dfrac{24 \text { dollars }}{1 \text { unit }}=\dfrac{x \text { dollars }}{27.5 \text { units }}\)
\(\begin{align}\ \begin{array}{r} 27.5 \\\ \times 24 \\ \hline 1100 \\ +5500 \\ \hline 660.0 \end{array} \end{align}\)

\(

\begin{array}{l}

\frac{24}{1}=\frac{x}{27.5} \\

\\

660=x \\ 660=x  \quad \text{Therefore} \quad x=660 \, \text{dollars} = \$ 660

\end{array}

\)