Using JIT in a Green Supply Chain
Modeling and Assumptions
The Formulation Parameters
Total cost to the supplier for purchasing products from the manufacturer:
\(P S M T C=\sum_{(a, b)} \sum_{T M}\left(P S M_{(a, b)} \times Q G_{(a, b), T M}\right) \chi_{(a, b), T M, n}\) (1)
Total cost to the DC warehouse for purchasing products from the supplier:
\(P W S T C=\sum_{(a, b)} \sum_{T M}\left(P W S_{(a, b)} \times Q G_{(a, b), T M}\right) \chi_{(a, b), T M, n}\) (2)
Total cost to the retailer for purchasing products from the DC warehouse:
\( P R W T C=\sum_{(a, b)} \sum_{T M}\left(P R W_{(a, b)} \times Q G_{(a, b), T M}\right) \chi_{(a, b), T M, n} \) (3)
Total cost to the DC warehouse for purchasing products from the manufacturer:
\( P W M T C=\sum_{(a, b)} \sum_{T M}\left(P W M_{(a, b)} \times Q G_{(a, b), T M}\right) \chi_{(a, b), T M, n}\) (4)
Total cost to the DC warehouse for purchasing packaging materials:
\(P W C T C=P W C \times\left(n-\sum_{n=1}^{n} \sum_{T M=2} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (5)
Total cost from the manufacturer to the supplier:
\(T M S T C=T M S \times\left(\sum_{n=1}^{n} \sum_{T M=1} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (6)
Total cost from the supplier to the DC warehouse:
\(T S W T C=T S W \times\left(\sum_{n=1}^{n} \sum_{T M=1} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (7)
Total cost from the DC warehouse to the retailer:
\(T W R T C=T W R \times\left(\sum_{n=1}^{n} \sum_{T M=1} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (8)
Total cost from the retailer to the manufacturer:
\(T R M T C=T W R \times\left(\sum_{n=1}^{n} \sum_{T M=1}^{2} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (9)
Total cost to ship from the manufacturer to the DC warehouse:
\(T M W T C=T W R \times\left(\sum_{n=1}^{n} \sum_{T M=2} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (10)
Total cost of inventory for the DC warehouse:
\(I W T C=I W \times\left(\sum_{n=1}^{n} \sum_{T M=1}^{2} O H_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (11)
Total cost of inventory for the manufacturer:
\(I M T C=I W \times\left(\sum_{n=1}^{n} \sum_{T M=1}^{2} O O_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (12)
Total cost to the producing merchant:
\( F G T C=\sum_{(a, b)} \sum_{T M}\left(F G_{(a, b)} \times Q G_{(a, b), T M}\right) \chi_{(a, b), T M, n}\) (13)
Total cost of producing packaging materials:
\( F C T C=F C \times\left(n-\sum_{n=1}^{n} \sum_{T M=1}^{2} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (14)
The ordering quantity of goods:
\(\begin{aligned}
&Q G=M I P G_{(a, b), T M, n}-O H G_{(a, b), T M, n}-O O G_{(a, b), T M, n} \\
&\text { for a }=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}, \mathrm{TM}=1 \text { or } 2, \mathrm{n}=1 \ldots \mathrm{n}
\end{aligned} \)
(15)The maximum inventory in the production of goods:
\( \begin{gathered}
M I P G=M A D G_{(a, b), T M, n}\left(O C G_{(a, b), T M, n}+L T G_{(a, b), T M, n}+S S D G_{(a, b), T M, n}+S S L T G_{(a, b), T M, n}\right) \\
\text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}, \mathrm{TM}=1 \text { or } 2, \mathrm{n}=1 \ldots \mathrm{n}
\end{gathered}\) (16)
Unit emissions as a result of producing packaging materials at the manufacturing plant:
\(E C P C=E C P \times\left(n-\sum_{n=1}^{n} \sum_{T M=1}^{2} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (17)
Unit carbon emissions as a result of transportation from the manufacturer to the supplier:
\( E M S C=E M S \times\left(\sum_{n=1}^{n} \sum_{T M=1} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (18)
Unit carbon emissions as a result of transportation from the supplier to the DC warehouse:
\( E S W C=E S W \times\left(\sum_{n=1}^{n} \sum_{T M=1} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B} \) (19)
Unit carbon emissions as a result of transportation from the DC warehouse to the retailer:
\( E W R C=E W R \times\left(\sum_{n=1}^{n} \sum_{T M=1}^{2} \chi_{(a, b), T M, n}\right) \text { for a }=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (20)
Unit carbon emissions as a result of transportation from the DC warehouse to the retailer:
\(E R M C=E R M \times\left(\sum_{n=1}^{n} \sum_{T M=2} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (21)
Unit carbon emissions as a result of transportation from the manufacturer to the DC warehouse:
\(E M W C=E M W \times\left(\sum_{n=1}^{n} \sum_{T M=2} \chi_{(a, b), T M, n}\right) \text { for } \mathrm{a}=1 \ldots \mathrm{A}, \mathrm{b}=1 \ldots \mathrm{B}\) (22)