Practice with Graphing Quadratic Equations

Practice

Answers

1.

\(y=x^{2}-2 x-8\)

\(y-\operatorname{inter}:(0,-8)\)

\(\begin{array}{r}

x-\text { inter: } 0=x^{2}-2 x-8 \\

0=(x-4)(x+2) \\

x-4=0 \quad x+2=0 \\

+4+4 \quad-2-2 \\

\hline x=4 \quad x=-2

\end{array}\)

\((4,0),(-2,0)\)

\(\begin{aligned}

&\text { vertex: } x=\frac{2}{2(1)}=\frac{2}{2}=1\\

&y=(1)^{2}-2(1)-8\\

&y=1-2-8\\

&y=-9\\

&(1,-9)

\end{aligned}\)


3.

\(y=2 x^{2}-12 x+10\)

\(y \text {-inter: }(0,10)\)

\(\begin{array}{r}

x-\text { inter: } 0=2 x^{2}-12 x+10 \\

0=2\left(x^{2}-6 x+5\right) \\

0=2(x-5)(x-1) \\

x-5=0 \quad x-1=0 \\

+5+5+1+1 \\

\hline x=5 \quad x=1

\end{array}\)

\((5,0)(1,0)\)

\(\begin{aligned}

&\text { vertex: } x=\frac{12}{2(2)}=\frac{12}{4}=3 \\

&y=2(3)^{2}-12(3)+10 \\

&y=2(9)-36+10 \\

&y=18-36+10 \\

&y=-8 \\

&(3,-8)

\end{aligned}\)

5.

\(y=-2 x^{2}+12 x-18\)

\(y-\operatorname{inter}:(0,10)\)

\(\begin{aligned}

x-\text { inter: } 0 &=-2 x^{2}+12 x-18 \\

0 &=-2\left(x^{2}-6 x+9\right) \\

0 &=-2(x-3)^{2} \\

x-3 &=0 \\

\hline+3 &+3 \\

x &=3

\end{aligned}\)

\((3,0)\)

\(\text { vertex: } x=\frac{-12}{2(-2)}=\frac{-12}{-4}=3\)

\(\begin{aligned}

&y=-2(3)^{2}+12(3)-18 \\

&y=-2(9)+36-18 \\

&y=-18+36-18 \\

&y=0 \\

&(3,0)

\end{aligned}\)

7.

\(y=-3 x^{2}+24 x-45\)

\(y-\operatorname{inter}:(0,-45)\)

\(\begin{array}{r}

x-\text { inter: } 0=-3 x^{2}+24 x-45 \\

0=-3\left(x^{2}-8 x+15\right) \\

0=-3(x-5)(x-3) \\

x-5=0 \quad x-3=0 \\

+5+5 \quad+3 \quad+3 \\

\hline x=5 \quad x=3

\end{array}\)

\((5,0)(3,0)\)

\(\text { vertex: } x=\frac{-24}{2(-3)}=\frac{-24}{-6}=4\)

\(\begin{aligned}

&y=-3(4)^{2}+24(4)-45 \\

&y=-3(16)+96-45 \\

&y=-48+96-45 \\

&y=3 \\

&(4,3)

\end{aligned}\)

9.

\(y=-x^{2}+4 x+5\)

\(y \text {-inter: }(0,9)\)

\(\begin{aligned}

x-\text { inter: } 0 &=-x^{2}+4 x+5 \\

0 &=-1\left(x^{2}-4 x-5\right) \\

0 &=-1(x-5)(x+1) \\

x-5 &=0 \quad x+1=0 \\

+5 &+5-1-1 \\

\hline x &=5 \quad x=-1

\end{aligned}\)

\((5,0) \quad(-1,0)\)

\(\text { vertex: } x=\frac{-4}{2(-1)}=\frac{-4}{-2}=2\)

\(\begin{aligned}

&y=-(2)^{2}+4(2)+5 \\

&y=-4+8+5 \\

&y=9 \\

&(2,9)

\end{aligned}\)

11.

\(y=-x^{2}+6 x-5\)

\(y \text {-inter: }(0,-5)\)

\(\begin{array}{r}

x-\text { inter: } 0=-x^{2}+6 x-5 \\

0=-1\left(x^{2}-6 x+5\right) \\

0=-1(x-1)(x-5) \\

x-1=0 \quad x-5=0 \\

+1+1 \quad+5+5 \\

\hline x=1 \quad x=5

\end{array}\)

\((1,0) \quad(5,0)\)

\(\text { vertex: } x=\frac{-6}{2(-1)}=\frac{-6}{-2}=3\)

\(\begin{aligned}

&y=-(3)^{2}+6(3)-5 \\

&y=-9+18-5 \\

&y=4 \\

&(3,4)

\end{aligned}\)

13.

\(y=-2 x^{2}+16 x-24\)

\(y-\text { inter: }(0,-24)\)

\(\begin{array}{r}

x-\text { inter: } 0=-2 x^{2}+16 x-24 \\

0=-2\left(x^{2}-8 x+12\right) \\

0=-2(x-2)(x-6) \\

x-2=0 \quad x-6=0 \\

+2+2 \quad+6+6 \\

\hline x=2 \quad x=6

\end{array}\)

\((2,0) \quad(6,0)\)

\(\text { vertex: } x=\frac{-16}{2(-2)}=\frac{-16}{-4}=4\)

\(\begin{aligned}

&y=-2(4)^{2}+16(4)-24 \\

&y=-2(16)+64-24 \\

&y=-32+64-24 \\

&y=8 \\

&(4,8)

\end{aligned}\)

15.

\(y=3 x^{2}+12 x+9\)

\(y-\text { inter: }(0,9)\)

\(\begin{aligned}

x-\text { inter: } 0 &=3 x^{2}+12 x+9 \\

0 &=3\left(x^{2}+4 x+3\right) \\

0 &=3(x+1)(x+3) \\

x+1 &=0 \quad x+3=0 \\

-1 &-1 \quad-3-3 \\

\hline x &=-1 \quad x=-3

\end{aligned}\)

\((-1,0) \quad(-3,0)\)

\(\text { vertex: } x=\frac{-12}{2(3)}=\frac{-12}{6}=-2\)

\(\begin{aligned}

&y=3(-2)^{2}+12(-2)+9 \\

&y=3(4)-24+9 \\

&y=12-24+9 \\

&y=-3 \\

&(-2,-3)

\end{aligned}\)

17.

\(y=5 x^{2}-40 x+75\)

\(y \text {-inter: }(0,75)\)

\(\begin{array}{r}

x-\text { inter: } 0=5 x^{2}-40 x+75 \\

0=5\left(x^{2}-8 x+15\right. \\

0=5(x-3)(x-5) \\

x-3=0 x-5=0 \\

+3+3+5+5 \\

\hline x=3 \quad x=5

\end{array}\)

\(\text { vertex: } \frac{40}{2(5)}=\frac{40}{10}=4\)

\(\begin{aligned}

&y=5(4)^{2}-40(4)+75 \\

&y=5(16)-160+75 \\

&y=80-160+75 \\

&y=-5 \\

&(4,-5)

\end{aligned}\)

19.

\(y=-5 x^{2}-60 x-175\)

\(y-\text { inter: }(0,-175)\)

\(\begin{gathered}

x-\text { inter: } 0=-5 x^{2}-60 x-175 \\

0=-5\left(x^{2}+12 x+35\right) \\

0=-5(x+5)(x+7) \\

x+5=0 \quad x+7=0 \\

-5-5 \quad-7-7 \\

\hline x=-5 \quad x=-7

\end{gathered}\)

\((-5,0) \quad(-7,0)\)

\(\text { vertex: } x=\frac{60}{2(-5)}=\frac{60}{-10}=-6\)

\(\begin{aligned}

&y=-5(-6)^{2}-60(-6)-175 \\

&y=-5(36)+360-175 \\

&y=-180+360-175 \\

&y=5 \\

&(-6,5)

\end{aligned}\)