Review of Inequalities
Testing solutions to inequalities - Questions
Answers
1. A. \(h = 12\)
Let's plug in \(h=12\) and see if the inequality is true.
\(\begin{aligned}
6 & \geq \frac{h}{2} \\
6 & \stackrel {?}{\geq} \frac{12}{2} \\
6 & \geq 6
\end{aligned}\)
Yes, \(h =12\) is a solution!
Now let's try \(h =14\).
\(\begin{aligned}
&6 \geq \frac{h}{2} \\
&6 \stackrel {?}{\geq} \frac{14}{2} \\
&6 \not {\geq} 7
\end{aligned}\)
No, \(h=14\) is not a solution.
Let's try \(h =16\).
\(\begin{aligned}
6 & \geq \frac{h}{2} \\
6 & \stackrel {?}{\geq} \frac{16}{2} \\
6 & \not{\geq} 8
\end{aligned}\)
No, \(h = 16\) is not a solution.
The following \(h\)-value satisfies the inequality \(6 \geq \frac{h}{2}\):
- \(h = 12\)
2. B.\(z =9\), C. \(z =10\)
Let's plug in \(z=8\) and see if the inequality is true.
\(\begin{aligned}
&7 < \frac{z}{2}+3 \\
&7 \stackrel {?}{ < } \frac{8}{2} + 3 \\
&7 \stackrel{?}{ < } 4+3 \\
&7 \nless 7 \\
\end{aligned}\)
No, \(z = 8\) is not a solution.
Now let's try \(z=9\).
\(\begin{aligned}
&7 < \frac{z}{2}+3 \\
&7 \stackrel {?}{ < } \frac{9}{2} + 3 \\
&7 \stackrel{?}{ < } 4.5 +3 \\
&7 < 7.5 \\
\end{aligned}\)
Yes, \(z =9\) is a solution!
Let's try \(z =10\).
\(\begin{aligned}
&7 < \frac{z}{2}+3 \\
&7 \stackrel {?}{ < } \frac{10}{2} + 3 \\
&7 \stackrel{?}{ < } 5 +3 \\
&7 < 7.5 \\
\end{aligned}\)
Yes, \(z =10\) is a solution!
The following \(z\)-values satisfy the inequality \(7 < \frac{z}{2}+3\):
- \(z =9\)
- \(z= 10 \)
3. A. \(f=4\)
Let's plug in \(f=4\) and see if the inequality is true.
\(\begin{aligned}
f+8 & \leq 12 \\
4+8 & \stackrel{?}{\leq} 12 \\
12 & \leq 12
\end{aligned}\)
Yes, \(f=4\) is a solution.
Now let's try \(f=5\).
\(\begin{aligned}
f+8 & \leq 12 \\
5+8 & \stackrel {?} { \leq } 12 \\
13 & \leq 12
\end{aligned}\)
No, \(f=5\) is not a solution.
Let's try \(f=6\).
\(\begin{aligned}
f+8 & \leq 12 \\
6+8 & \stackrel {?} { \leq } 12 \\
14 & \leq 12
\end{aligned}\)
No, \(f=6\) is not a solution.
The following \(f\)-values satisfy the inequality \(f+8 \leq 12:\)
- \(f=4\)
4. A. \(n=10\)
Let's plug in \(n=10\) and see if the inequality is true.
\(\begin{aligned}
3 n-7 & < 26 \\
3(10)-7 & \stackrel{?}{ < } 26 \\
30-7 & \stackrel{?}{ < } 26 \\
23 & < 26
\end{aligned}\)
Yes, \(n=10\) is a solution!
Now let's try \(n=11\).
\(\begin{aligned}
3 n-7 & < 26 \\
3(11)-7 & \stackrel{?}{ < } 26 \\
33-7 & \stackrel{?}{ < }26 \\
23 & \nless 26
\end{aligned}\)
No, \(n=11\) is not a solution.
Let's try \(n=12\).
\( \begin{aligned}
3 n-7 & < 26 \\
3(12)-7 & \stackrel{?}{ < } 26 \\
36-7 & \stackrel{?}{ < } 26 \\
29 & \nless 26
\end{aligned}\)
No, \(n=12\) is not a solution.
The following \(n\)-values satisfy the inequality \(3 n-7 < 26\):
- \(n=10\)