Equations with variables on both sides

Equations with variables on both sides: decimals & fractions - Questions

Answers

1. \(k = 3\)

We need to manipulate the equation to get \(k\) by itself.

\(4.5+1.5k=18−3k\)
\( 4.5+1.5 k+3 k =18-3 k+3 k \) Add \(3k\) to each side.
\( 4.5 k+4.5 =18 \) Combine like terms.
\( 4.5 k+4.5-4.5 =18-4.5 \) Subtract \(4.5\) from each side.
\( 4.5 k =13.5 \) Combine like terms.
\( \frac{4.5 k}{4.5} =\frac{13.5}{4.5} \) Divide each side by \(4.5\).
\( k =3 \) Simplify.


The answer: \(k = 3\)


Let's check our work!

\(\begin{aligned}

4.5+1.5 k &=18-3 k \\

4.5+1.5(3) & \stackrel{?}{=} 18-3(3) \\

4.5+4.5 & \stackrel{?}{=} 18-9 \\

9 &=9 \quad \text { Yes! }

\end{aligned}\)


2.

We need to manipulate the equation to get \(s\) by itself.

\(2-2 s=\frac{3}{4} s+13\)
\( 2-2 s-\frac{3}{4} s =\frac{3}{4} s+13-\frac{3}{4} s\) Subtract \(\frac{3}{4}\) from each side.
\( -\frac{11}{4} s+2 =13 \) Combine like terms.
\( -\frac{11}{4} s+2-2 =13-2 \) Subtract \(2\) from each side.
\( -\frac{11}{4} s =11 \) Combine like terms.
\( s \cdot\left(-\frac{4}{11}\right) =11 \cdot\left(-\frac{4}{11}\right)\) Multiply each side by \(-\frac{4}{11}\).
\( s =-\frac{44}{11} \)
\( s =-4 \) Simplify.


The answer: \(s = -4\)


Let's check our work!

\(\begin{aligned}

2-2 s &=\frac{3}{4} s+13 \\

2-2(-4) & \stackrel{?}{=} \frac{3}{4}(-4)+13 \\

2+8 & \stackrel{?}{=}-\frac{12}{4}+13 \\

10 & \stackrel{?}{=}-3+13 \\

10 &=10 \quad \text { Yes! }

\end{aligned}\)


3. \(g = 0.5\)

We need to manipulate the equation to get \(g\) by itself.

\(9+3.5g=11−0.5g\)
\( 9+3.5 g+0.5 g =11-0.5 g+0.5 g \) Add \(0.5g\) to each side.
\( 9+4 g =11 \) Combine like terms.
\( 4 g+9-9 =11-9 \) Subtract \(9\) from each side.
\( 4 g =2 \) Combine like terms.
\( \frac{4 g}{4} =\frac{2}{4} \) Divide each side by \(4\).
\( g =0.5 \) Simplify.


The answer: \(g = 0.5\)


Let's check our work!

\(\begin{aligned}

9+3.5 g &=11-0.5 g \\

9+3.5(0.5) & \stackrel{?}{=} 11-0.5(0.5) \\

9+1.75 & \stackrel{?}{=} 11-0.25 \\

10.75 &=10.75 \quad \text { Yes! }

\end{aligned}\)


4. \(p = 3\)

We need to manipulate the equation to get \(p\) by itself.

\(16-3 p=\frac{2}{3} p+5\)
\( 16-3 p-\frac{2}{3} p =\frac{2}{3} p+5-\frac{2}{3} p \) Subtract \(\frac{2}{3}p\) from each side.
\( -\frac{11}{3} p+16 =5 \) Combine like terms.
\( -\frac{11}{3} p+16-16 =5-16 \) Subtract \(16\) from each side.
\( -\frac{11}{3} p =-11 \) Combine like terms.
\( -\frac{11}{3} p \cdot\left(-\frac{3}{11}\right) =-11 \cdot\left(-\frac{3}{11}\right) \) Multiply each side by \(-\frac{3}{11}\)
\( p =\frac{33}{11}\)
\( p =3 \) Simplify.


The answer: \(p = 3\)


Let's check our work!

\(\begin{aligned}

16-3 p &=\frac{2}{3} p+5 \\

16-3(3) & \stackrel{?}{=} \frac{2}{3}(3)+5 \\

16-9 & \stackrel{?}{=} 2+5 \\

7 &=7 \quad \text { Yes! }

\end{aligned}\)